Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows.

نویسندگان

  • Jacob Cohen
  • Jimmy Philip
  • Guy Ben-Dov
چکیده

The failure of normal-mode linear stability analysis to predict a transition Reynolds number (Retr) in pipe flow and subcritical transition in plane Poiseuille flow (PPF) has led to the search of other scenarios to explain transition to turbulence in both flows. In this work, various results associated with linear and nonlinear mechanisms of both flows are presented. The results that combine analytical and experimental approaches indicate the strong link between the mechanisms governing the transition of both flows. It is demonstrated that the linear transient growth mechanism is based on the existence of a pair of least stable nearly parallel modes (having opposite phases and almost identical amplitude distributions). The analysis that has been applied previously to pipe flow is extended here to a fully developed channel flow predicting the shape of the optimized initial disturbance (a pair of counter-rotating vortices, CVP), time for maximum energy amplification and the dependence of the latter on Re. The results agree with previous predictions based on many modes. Furthermore, the shape of the optimized initial disturbance is similar in both flows and has been visualized experimentally. The analysis reveals that in pipe flow, the transient growth is a consequence of two opposite running modes decaying with an equal decay rate whereas in PPF it is due to two stationary modes decaying with different decay rates. In the first nonlinear scenario, the breakdown of the CVPs (produced by the linear transient growth mechanism) into hairpin vortices is followed experimentally. The associated scaling laws, relating the minimal disturbance amplitude required for the initiation of hairpins and the Re, are found experimentally for both PPF and pipe flow. The scaling law associated with PPF agrees well with the previous predictions of Chapman, whereas the scaling of the pipe flow is the same as the one previously obtained by Hof et al. indicating transition to a turbulent state. In the second nonlinear scenario, the base flow of pipe when it is mildly deviated from the Poiseuille profile by an axisymmetric distortion is examined. The nonlinear features reveal a Retr of approximately 2000 associated with the bifurcation between two deviation solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear elastic instability in channel flows at low Reynolds numbers.

It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long, straight microchannel; flow disturbances are introduced at the entrance of the cha...

متن کامل

Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...

متن کامل

Dynamical stability of cantilevered pipe conveying fluid in the presence of linear dynamic vibration absorber

When the velocity of fluid flow in a cantilevered pipe is successively increased, the system may become unstable and flutter instability would occur at a critical flow velocity. This paper is concerned with exploring the dynamical stability of a cantilevered fluid-conveying pipe with an additional linear dynamic vibration absorber (DVA) attachment. It is endeavoured to show that the stability o...

متن کامل

کاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال

In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...

متن کامل

Calculation of Friction Coefficient and Analysis of Fluid Flow in a Stepped Micro-Channel for Wide Range of Knudsen Number Using Lattice Boltzmann (MRT) Method

  Micro scale gas flows has attracted significant research interest in the last two decades. In this research, the fluid flow of gases in the stepped micro-channel at a wide range of Knudsen number has been analyzed with using the Lattice Boltzmann (MRT) method. In the model, a modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the veloci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 367 1888  شماره 

صفحات  -

تاریخ انتشار 2009